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ABSTRACT
Let X and Y be Banach spaces. We consider the following problem: Given an
almost isometry F from the unit ball of X into the unit ball of Y, does there
exist an isometry near to F? It is shown that for X = Y =/, the answer is
negative.

Let X, Y be Banach spaces and let Bz(X) denote the ball with radius R and
center 0 in X. We say that F is an ¢-almost isometry of X if

A=&xi—x| S |Fx)—F) | =1 +e)]jx,—x | forall x€X.

We are interested to know whether an ¢-almost isometry of the unit ball is
near to an isometry of the unit ball, or perhaps near to an isometry on a smaller
ball. To be more precise we consider the following problem:

Given R, 0 < R < 1, is there a function d(¢) (depending on X, Y and R) such
that d(¢)—= 0 when ¢ — 0 and such that the following holds: Given ¢-almost
isometry F:B(X)—Y there is an isometry G:Bp(X)—Y such that

| F(x) — G(x) |} =8(e) on Bx(X)?

For linear maps a positive answer has been obtained for C(K)-spaces by
Benyamini [2] and for L,-spaces by Alspach [1].

For non-linear maps a positive answer has been obtained for C(K)-spaces, K
compact metric, by the author [3].

In the view of these positive results it may be somewhat surprising that if
X =Y =, the answer is negative for every R, 0 <R < 1. More precisely we
have the following theorem.
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THEOREM 1. Let M be any number = 3. For every ¢ >0 there is an
e-almost isometry F: B\(l,)— B(l,) such that for every isometry G defined on
some subset of |, containing Bg,,(l)) into |, we have | G(x)— F(x) | = 1/M?
Jor some x € By,(1)).

The problem is still open for By(l,), p > 1 and for B\(L,), p = 1. However,
for X =Y =(L,(0, 1) X R), the answer is negative and we have the following
theorem.

THEOREM 2. Let M be any number = 3. For every ¢ >0 there is an
e-almost isometry

F: B,((L\(0, 1) X R))) > B,((L«(0, 1) X R),)

such that for every isometry G defined on some subset of (L,(0, 1) X R),
containing B, (L (0, 1) X R),) into (L,(0, 1) X R), we have

| G(x)— F(x)|| = 1/2M? for some x € By, ((L,(0, 1) X R),).
In (L0, 1) XR) we have || (f, )]l = | fll.,+ |7l

In the proof of Theorem 1 we will use the following lemma. It is well-known,
but for the sake of completeness we include a proof.

LEMMA 1. Let M be a subset of |, and let G : M — I, be an isometry with
G0)=0. If x,y,x.+yEM and x,y have disjoint supports then G(x) and
G(y) have disjoint supports.

PrOOF. Let G(x)=2Z a;e;, G(¥)=Z b,e;, G(x + y) = Z c;e;. Assume that
ay and by, both are different from zero. Since

Zlg; = bl = |G -G =lx—yl=0xI+lrl
=Z|a;| +Z|bi|

we see that ay and by have opposite signs.
We assume ay > 0. We have

Ixl+ Uyl =0x+yll=1Gx+»l
SIGx+Y)—GX) )+ |G| =yl +lIx].

Since ay > 0 we see that cy — ay = 0 and hence ¢y > 0.
On the other hand we also have

G+ =NGx+)—-GWMIE+I1GWI=lxIl+ 1yl
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Since by <0 we see that ¢y — by =0 and hence cy <0, which gives a con-
tradiction.

REMARK. An easy consequence of Lemma 1 is that if G : Bg(l,) = Br(l)) is
an isometry with G(0) =0 and if x, y € By5(/,) have disjoint supports, then
G(x) and G(y) have disjoint supports. However, we cannot conclude that G
maps elements with disjoint supports onto elements with disjoint supports on
bigger balls that Bg,(/,). To show this we now give an example of an isometry
G : Br(l,) = Bi{l)) such that G(re,) and G(re,) do not have disjoint supports for
r>R/2.

Leta =22, a;¢; and define

G@= 3 G@e

where
a,—R/2 ifa,>R/2,
(G(a)), = _(az—R/Z) lfa2>R/2,
0 otherwise;
R/2 ifa,>R/2,
(G(a),=
a otherwise;
R/2 ifa,>R/2,
(G(a);=
a, otherwise;

(G@)i=a;-,, iz4

Leta = Za;e;, b = Zb;e; € Bg(l,). To see that G is an isometry, we only need to
check by symmetry the cases:

@) a;,b;=RN2,i=1,2;

(b) a,>R/2; b, b, = R/2;

(c) a,, b,>R/2;

(d) a,, b,>R/2.
We check (d). Since a,, b, > R/2 we have
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o3l ol s

+ i la;, — b;|

i=3

| Fla)—F®) || =

=a—b+b—a+ Y |a— b
i=3

=lla=-b]|.
We can similarly check (a), (b) and (c). We have, for every r > R/2,
(G(rey), = (r — R/2) = — (G(rey)),.

PrOOF OF THEOREM 1. We assume ¢ = 1/n for some integer n and fora €/,
we define F, and F, by

a, an+l§0
Fia)=

;;l< Z € — n+l>a an+l§0

and Fy(a) = Z~, F)(a;e;) where

Qi€nritis I=nand q;<2/M,

(a,- - 2/M)e, +(2/M)€,,+|+,-, lé n and a,' 22/M,
Fya;e;)= )

Ayi1€n+1s l=n+1,

A;i€yyis i>n+1.

Let F = F, o F,. The strategy for proving that F is an almost isometry of B(/,) is
that the supports of F(Z/., a;¢;) and F(a,.,e,.,) will only overlap for those i
for which a; > 2/M. Since there are at most M/2 such a;’s if 2. |a;| = 1, we
never get a big overlap.

To prove that Fis far from an isometry we use Lemma 1. The overlap of the
supports in the definition of F(a,, e, ) Will make it impossible to be near to
an isometry. We now give the details.

Fora€l letS, ={1,2,...,n} N supp(a). It is trivial to check that F, is an
into isometry with (Fa));=0 for 1 =i =<n and that, if ||a| =1, then
card(Sg,q) = M/2.

Hence, to prove that F is an almost isometry, one only needs to prove:
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CLamM. If card(S,), card(S;) = M/2 and a;, b; 2 0 for 1 =i = n, then we
have
la=bll = || Fia)—F®)| z(1-¢e)fla=b].

ProOF. We have to check three cases:
() Ifa,,, b, =0thenclearly || F(a)—F,b)|| = |la—b].
(i) Ifa,., = b, = 0 then we have

IF@—-F®) = ¥  &@i—bp )/ M+(1—1/M)ay, —bysy)

(1ot \SLU S,

+ ¥ (@ +e@s— by )/ M)

S\S.NSp

+ X b —e@1—bpr )M

S5\SeN Sy

+ Y la—b+e@— b))/ M|+ Y la—bil.

S.N S n+2

By using the triangle inequality (on the third and fourth sum) and since ne = 1,
card(S;) < M/2 we see that

la—bll z | Fila) - F®) |
zla-b| -2 s28(an+1—b..+l)

= |la—b || —2e(card(S;))(@n+1— by+1)
z(l-¢e)fla—-b}y.
(iii) Ifa,,,= 0= b, ,, then we have

IF@-F®I= X e, /M+((1—-1Ma,,—b,1)

{Lsn)\S.US}

+ ¥ (4 +ea, /M)+ Y |bi—ea, /M|
S\S2N Sy Se\SeN Sy

+ ¥ la—b+ea, M|+ T |a;—b].

SN S5 n+2
By using the triangle inequality we see that
la=b| z |F@)—-F@®)| zlla-b] -2 szw"“/M
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Z la—>b| —2ecard(Sp)a, . — b M Z JJa—b||(1—¢)

since card(S,) = M/2.
Thus we have proved that F is an ¢-almost isometry.

Now, let G be any isometry defined on a subset of /, containing B, (/). If
G(0) =0 then, by Lemma 1,

G(Aile,.) and G(A%ej)

have disjoint supports if | # j. Let

s~fisn(o(e) o

IfS={1,2,...,n} then

(G(}—f—[e,,+,)>i=0 forall i =n.
7o) -5l 22 330

IfS#{1,2,... ,n}, then for some i = n we have

(oG-
o) -rGl ==

Now, if 0 = || G(0) || = 1/M?set H(x) = G(x) — G(0). Since H is an isometry
with H(0) = 0, from the calculation above we get for some i,i <n + 1,

Hence

and therefore

Z2—=

1
M

Ai{lé "H(I%Ie,)—FGIe,-) = “G(I%e,-)—F(A%ei) + 1 GO
Thus
o)l

The remaining case || G(0) | > 1/M? is trivial.
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This completes the proof of Theorem 1.

Let F be an ¢-almost isometry defined on /;. Then the following problem is
open:

Given any R > 0, is there an isometry G defined on Br(/;)) and a d = d(e, R)
such that  — 0 when ¢ — 0 and such that || G(x) — F(x) | =J on Bg(}})?

Since constructions of £-almost isometries of the type used in the proof of
Theorem 1 only work on bounded sets, the method in this paper seems to give
no information on that question.

The proof of Theorem 2 is similar to the proof of Theorem 1, but for the sake
of completeness we include a proof.

In the proof we will identify (L,(0, 1) X R), with the space

X={f€L(0,2): f=con[l,2]}
and use the following lemma.

LEMMA 2. Let M be a subset of L\(0,2) and let G: M —L,(0, 2) be an
isometry with G(0)=0. If f,g, f+ g EM and {x: fix) # 0} N {x:g(x) # 0}
has measure zero then {x:G(f)x)# 0} N {x:G(g)x)+ 0} has measure
zero.

The proof is similar to the proof of Lemma 1 and we omit it.

PrOOF OF THEOREM 2. We assume ¢ = 1/n for some integer n.
Let f€ B,(X) with f =g on [1, 2] and define F,( /) by

F(H=Ff ifa<0
and if a > 0 we let

fix)+2a/M  onl0,1),
F(f)x)= 1ftx) on[} 1),
(1—-1/M)a on[l,2].
We define F, on B,(X) by
sup{2(f(2x) —2n/M),0}  on[0,4),
F)(f)x)= 1inf{2/(2x — 1), 4n/M} on[4, 1),
x) on[l,2].
Now, let F = F,~ F, and let S; = {x €[0, 1]; f(x) > 0}. One can easily check
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that F, is an into isometry. Moreover, we have F( f) = 0 on [0, }) and, since
| £l =1, the measure of the set Sg,  is less than or equal to M/4n = eM/4.
Thus, to prove that F is an almost isometry one only needs to prove:

Cramm. If m(Sy), m(S,) < eM/4 and f, g = 0 on [0, }] then we have

If—glz |F(N-F@lz1-ellf-¢gl.

PrOOF. Let f=a, g =bon[l, 2]. We have to check three cases:
(@) If a, b =0 then clearly | Fy(f)—Fi@) |l = I.f—2.
(ii) If a > 0= b then we have

| Fi()—F(@| = f (2a/M)dx + (flx) + 2a/M)dx

(0,1/2]\SUSp SASNSp

+f |2a/M — g(x)|dx

S\SN Sy

+f | f(x) —g(x) + 2a/M |dx
NS,

+f | f(x) —g(x)|dx +f (1 — 1/M)a — b)dx.

[1/2,1] [1,2]

By using the triangle inequality and the fact that m(S,) < eM/4 we see that
If—gl 2 IFD-F@ 1 2 1/-gl 2 [, @armax

=|f—gll —4amS)yMz=z | f—¢g| —eaz | f-gl(1-e)

(iii) If a = b > 0 then we have

I -F@I = | 2a — byMdx

[0,1/21\(S;U Sp

+ f (fix) + 2(a — by M)dx
SASNS,

+ lg(x)—2(a — b)Y/M |dx

S\ SN Sp)

+ f | fix) — g(e) + 2a — bYM |dx
SN,

* f(uz,u | fx) — g(x) ] dx + fm] (1—1/M)a — b)dx.

By using the triangle inequality we see that
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If=gl z I F(N)-F@I
2 1/-¢ll -2 [ 2a—bymax
= /=gl —4a—bm(S)M
z||f-gll —e@a—b)
z | f-gll(1-e).
Thus we have proved that F is an ¢-almost isometry.

Now, let G: B¢ (X)— B(X) be an isometry and let f,€B,,,(X), i =
1,2,...,nbe defined by

3n/IM  if(i—1Yn=<x=iln
filx)=

0 otherwise
and let
0, O=x<1
Srialx) =
3/M, I1=x=2.

Then F(f)(x)=2n/Mon [(i — 1)/2n,i/2n]} and F( f,,)(x)=6/M? on [0, }).
We first assume that G(0) = 0. Then by Lemma 2 we have

m({x:G(fYx)#0}N{x:G(f)x)#0D=0 ifi+#j, i,jSn+1.

Set
1
A,-={x:G(ﬁ)<x)¢0}n[‘—,i], i=1,....n
2n 2n
and set

N={i=n:m(4;)z 1/4n}.

If N#({1,2,...,n} then for some i =n we have m(4;) < 1/4n and hence
we get

16H-FUAI = [ |G()0x) — FCA)ox) dx

[ — 1V2n,i12n]\4;

2n
(G - D2n,inzapna; M
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mo1_1
M an M
Let
B,.={x:G(fn+.)(x)aeo}n[5_—l,i], i=1,...,n.
2n "2n

IfN={1,2,...,n}thenby Lemma 2 we have that m(B;) < 1/4nforalli < n.
Therefore we get

6
16U~ FUhdl 2 [ |60 -] d

n 6
= —dx
,-?1 J.[(i ~1¥2n,ii2n\B, M?
g n ._..6_.-1— = i
M?* 4n 2M?

Now, if 0 < || G(0) || = 1/2M? set H(f) = G(f) — G(0). Since H : B, (X)—~
B(X) is an isometry with H(0) = 0, from the calculation above we have that

3
Hence we get |
3 1
|G(H—-F(N)I ;2_1‘42_ GO} §E .

The remaining case | G(0) || > 1/2M? is trivial.
With this the proof of Theorem 2 is complete.
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